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Abstract: This study discusses some approximation properties of both Engel and Pierce expansions of an 

irrational number by a sequence of rational and the convergence nature of those sequences. The proposed work, 

found many rational approximation properties of both Engel and Pierce expansions of a given irrational. Thus, 

two integerssequences )( np  and )( nq  are found in both Engel and Pierce expansions satisfy some properties. 

Furthermore, ratio sequence of above two sequencescalled sequence of convergentindicatesa sequence of 

rational numbers that converge to the given irrational. Also, the error between the given irrational and terms of 

its sequence of convergent in Engel and Pierce expansions are discussed. Moreover, every even convergent of a 

Pierce continued fraction is greater than odd convergent. In contrast, every convergent in the Engel continued 

fraction is increasing. We conjecture that convergent rate of the Pierce continued fraction quickly than other two 

continued fractions. 
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I. INTRODUCTION 

A simple continued fraction of a real number  1,0x  is an expression of the form
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Engel expansion of a real number  1,0x can be expressed as an ascending continued fraction with the form
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Pierce expansion of a real number  1,0x can be expressed as an ascending alternating continued fraction 

with the form
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where  na is a sequence of positive integers. 

It is well known that the simple continued fraction is finite if and only if x  is a rational and it is periodic if and 

only if x  is a quadratic irrational. Simple infinite continued fraction expansions can be used to approximate 

irrationals. ]1[  

This study discusses the similar approximation properties of both Engel and Pierce expansions of a given 

irrational number in the interval  1,0  and the convergence nature of sequence of rational numbers obtained 

using above mentioned expansions.  

 

II. RESULTS AND DISCUSSION 
2.1 Engel Continued Fraction 

Proposition 1 

If  np  and  nq are two sequences of positive integers given by 000 ,1 aqp   and 
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Proof: 

We prove this by mathematical induction.The result follows obviously for 0n and, when 1n  
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Assume that the assertion is true for kn  some positive integer. 
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Therefore,By the Principle of Mathematical Induction the assertion is true for all n . 

The sequences  np  and  nq  has following properties: 

i. 111   nnnnn qqpqp for all  .0n  

ii.   222 1   nnnnnn qaqpqp for all  .1n  

 

One can prove the first identity using mathematical induction and second identity immediately follows by 

rearranging the terms of first identity. Based on these remarkablysimple recurrence properties, we can obtain 

one of our main results. Multiplying first identity by 
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Proposition 2 
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Since  na is a non-decreasing sequence of positive integers, by the squeeze theorem we have the desire 

answer. 

 

2.2 Pierce Continued Fraction 

Proposition 3 

Let  np  and  nq be the two sequences of positive integers given by 000 ,1 aqp   and 
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As in the previous case, here we argue by mathematical induction. The result follows obviously for 0n and, 
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Therefore, the assertion is true for .1n Assume that the assertion is true for kn  , some positive integer. 
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Therefore, By the Principle of Mathematical Induction the assertion is true for all n . 

The sequences  np  and  nq  satisfy property of   111 1   n
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Proposition 4 

Let  ,,,,, 210 naaaax  be an infinitePierce continued fraction, then
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Moreover, one can estimate the error, as the previous case, by using the set of inequalities: 
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To validate the above results, the variation of nc for 23 is given below for the simple, Engle and Pierce 
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III. CONCLUSION 

The proposed work indicated many approximation properties of both Engel and Pierce expansions of a 

given irrational. As a result, the sequences 11  nnn pap  and 1 nnn qaq  are found for all rational and 
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Pierce continued fractions resulted xcn lim , which is convergent. We hope to prove that convergent rate of 

the Pierce continued fraction quickly than other two continued fractions. 
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