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Abstract: This study discusses some approximation properties of both Engel and Pierce expansions of an 

irrational number by a sequence of rational and the convergence nature of those sequences. The proposed work, 

found many rational approximation properties of both Engel and Pierce expansions of a given irrational. Thus, 

two integerssequences )( np  and )( nq  are found in both Engel and Pierce expansions satisfy some properties. 

Furthermore, ratio sequence of above two sequencescalled sequence of convergentindicatesa sequence of 

rational numbers that converge to the given irrational. Also, the error between the given irrational and terms of 

its sequence of convergent in Engel and Pierce expansions are discussed. Moreover, every even convergent of a 

Pierce continued fraction is greater than odd convergent. In contrast, every convergent in the Engel continued 

fraction is increasing. We conjecture that convergent rate of the Pierce continued fraction quickly than other two 

continued fractions. 
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I. INTRODUCTION 

A simple continued fraction of a real number  1,0x  is an expression of the form
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x  where  na is a non-decreasing sequence of positive  

 

integers and this can be uniquely determined by the eliminating integers ,,, 21 xx  generating 
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x  If this expansion is finite, it is called a finite Engle continued 

fraction ]2[ . Similarly, the Pierce expansion is given by 
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Engel expansion of a real number  1,0x can be expressed as an ascending continued fraction with the form
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Pierce expansion of a real number  1,0x can be expressed as an ascending alternating continued fraction 

with the form
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thn convergent of the Pierce continued fraction is defined by ,,2,1,0
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where  na is a sequence of positive integers. 

It is well known that the simple continued fraction is finite if and only if x  is a rational and it is periodic if and 

only if x  is a quadratic irrational. Simple infinite continued fraction expansions can be used to approximate 

irrationals. ]1[  

This study discusses the similar approximation properties of both Engel and Pierce expansions of a given 

irrational number in the interval  1,0  and the convergence nature of sequence of rational numbers obtained 

using above mentioned expansions.  

 

II. RESULTS AND DISCUSSION 
2.1 Engel Continued Fraction 

Proposition 1 

If  np  and  nq are two sequences of positive integers given by 000 ,1 aqp   and 

,,1 11   nnnnnn qaqpap then
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Proof: 

We prove this by mathematical induction.The result follows obviously for 0n and, when 1n  
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Therefore, the assertion is true for .1n  

Assume that the assertion is true for kn  some positive integer. 
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Therefore,By the Principle of Mathematical Induction the assertion is true for all n . 

The sequences  np  and  nq  has following properties: 

i. 111   nnnnn qqpqp for all  .0n  

ii.   222 1   nnnnnn qaqpqp for all  .1n  

 

One can prove the first identity using mathematical induction and second identity immediately follows by 

rearranging the terms of first identity. Based on these remarkablysimple recurrence properties, we can obtain 

one of our main results. Multiplying first identity by 

nn qq 1
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and the second identity by 

nn qq 2

1



 can obtain, 
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  for all  .1n Itshow that nc s are form a strictly increasing sequence of 

rational numbers which is bounded aboveby x . So, monotone convergent theorem gives us the convergence of 

the sequence  nc and moreover we prove that limit of this sequence is .x  

 

Proposition 2 

If  ,,,,,, 210  naaaax  then .lim xcn
n
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Since  na is a non-decreasing sequence of positive integers, by the squeeze theorem we have the desire 

answer. 

 

2.2 Pierce Continued Fraction 

Proposition 3 

Let  np  and  nq be the two sequences of positive integers given by 000 ,1 aqp   and 
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Proof: 

 

As in the previous case, here we argue by mathematical induction. The result follows obviously for 0n and, 

when ,1n  
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Therefore, the assertion is true for .1n Assume that the assertion is true for kn  , some positive integer. 
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Therefore, By the Principle of Mathematical Induction the assertion is true for all n . 

The sequences  np  and  nq  satisfy property of   111 1   n
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mathematical inductionand also the sequences satisfy property of     2
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can be proven thatrearranging above property. Dividing first property by 1nnqq  and the second property by 
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Moreover, we prove that every even convergent of a Pierce continued fraction is greater than odd convergent 

and limit of this sequence is .x  
 

 

 

Proposition 4 

Let  ,,,,, 210 naaaax  be an infinitePierce continued fraction, then
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Moreover, one can estimate the error, as the previous case, by using the set of inequalities: 
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To validate the above results, the variation of nc for 23 is given below for the simple, Engle and Pierce 

continued fraction. 

 

 

 
 

III. CONCLUSION 

The proposed work indicated many approximation properties of both Engel and Pierce expansions of a 

given irrational. As a result, the sequences 11  nnn pap  and 1 nnn qaq  are found for all rational and 

irrationals in Engel expansion and they satisfy 111   nnnnn qqpqp ,where 000 ,1 aqp  and .0n

Whereas for the Pierce continued fractions, the above sequences can be seen as   
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Also, the difference between the fraction and its convergent in Engel is found to be n
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odd convergent. In addition, every convergent in the Engel continued fraction is increasing. Both Engel and 

Pierce continued fractions resulted xcn lim , which is convergent. We hope to prove that convergent rate of 

the Pierce continued fraction quickly than other two continued fractions. 
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